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Regions within the medial temporal lobe and basal ganglia are thought to subserve distinct memory systems
underlying declarative and nondeclarative processes, respectively. One question of interest is how these
multiple memory systems interact during learning to contribute to goal directed behavior. While some
hypotheses suggest that regions such as the striatum and the hippocampus interact in a competitive manner,
alternative views posit that these structures may operate in a parallel manner to facilitate learning. In the
current experiment, we probed the functional connectivity between regions in the striatum and hippocampus
in the human brain during an event related probabilistic learning task that varied with respect to type of
difficulty (easy or hard cues) and type of learning (via feedback or observation). We hypothesized that the
hippocampus and striatum would interact in a parallel manner during learning. We identified regions of
interest (ROI) in the striatum and hippocampus that showed an effect of cue difficulty during learning and
found that such ROIs displayed a similar pattern of blood oxygen level dependent (BOLD) responses,
irrespective of learning type, and were functionally correlated as assessed by a Granger causality analysis.
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in the VTA fire in response to this novel information, releasing
dopamine into the hippocampus where it enhances long term
potentiation; thus forming a functional loop between the hippocam-
pus, nucleus accumbens, and midbrain which specializes in novelty
detection. However, this is not the sole anatomical connection
between the striatum and the hippocampus. There is also a direct
projection from the hippocampus to the ventral medial caudate
nucleus in the rodent (Jung et al., 2003). Combining this information
with the knowledge of the existence of multiple spiral loops between
the striatum and the midbrain dopaminergic centers (Haber, 2003), it
is plausible that there may be interactions between the hippocampus,
midbrain DA areas, and more dorsal regions of the striatum, via a
ventromedial to dorsolateral movement of information through these
spiral loops.

To expand upon these interactions, it has been proposed that
dopamine's role in reward related learning, which has been typically
associated with striatal function (for review see Schultz, 2002), also
facilitates long term memory formation in humans, which is more
traditionally associated with hippocampal function (Adcock et al.,
2006; Shohamy and Adcock, 2010; Shohamy and Wagner, 2008;
Wittmann et al., 2005). While a role for dopamine facilitating
hippocampal memory formation is well characterized in studies
involving non human animals (Packard and White, 1991), only
recently has this evidence been extended into human neuroimaging
experiments (Adcock et al., 2006; Shohamy and Wagner, 2008;
Wittmann et al., 2005). Considering the conflicting evidence regard-
ing the nature of the interactions between these memory systems in



well as an arrow which provides information regarding the cue's
value. During the feedback phase, feedback is given to the participant
following his or her response for the feedback version. In the
observation version, participants receive a message indicating
whether or not their response has been recorded. It is hypothesized
that the feedback version is akin to trial and error learning, considered
to be more similar to nondeclarative types of learning, as the
participant must learn which cue is associated with what value via
guessing (initially) and subsequently receiving feedback. The non-
declarative component of this version lies in the trial and error nature
of the feedback trial structure, which has been known to recruit
regions of the BG (Poldrack et al., 2001; Shohamy et al., 2008).
Furthermore, it is thought that the observation version of the task is
akin to paired-associate learning, considered to be more similar to
declarative types of learning, as the participant views both the cue and
its value simultaneously and may therefore overtly memorize the
association. The declarative component of this version is the cue
presentation phase, where participants may engage in memorization
strategies, and has been linked with MTL function, particularly the
hippocampus (Poldrack et al., 2001). However, these tasks may not be
exclusively solved via one learning mechanism or another. This issue
will be addressed further in Discussion.

The other independent variable manipulated was cue dif
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motion correction), spatial smoothing (4 mm, FWHM), voxel wise
linear detrending, high pass filtering of frequencies (3 cycles per time
course), and normalizing the data to Talairach sterotaxic space
(Talairach and Tournoux, 1988). A canonical two gamma hemody-
namic response function was used to convolve the events of interest.

During the learning phase, we examined neural activity across the 4
second period where learning occurred (2-s stimulus presentation/
participant response+2-s feedback presentation).We chose to conduct
the analysis in this manner due to the different nature of the feedback
andobservation trials. Relevant information in the feedback trials occurs
during the feedback presentation (last 2 s of the trial) whereas relevant
information in the observation trials occurs in the cue presentation
phase (first 2 s of the trial). Thus,we examined the BOLD activity during
the initial 4 second window of a trial to most accurately compare
feedback and observation learning. We conducted a random effects
general liner model (GLM) analysis using learning type (observation
and feedback) and cue difficulty (easy and hard) as predictors.
Additionally, 6 motion parameters were included as regressors of no
interest to further control for motion related issues. From this GLM, we
generated statistical parametric maps (SPM) thresholded at pb0.005,
using a cluster threshold with an extent of 5 contiguous voxels
(equivalent to 135 mm3 of tissue in 1×1×1 mm increments). Unless
otherwise noted, for all SPMs generated during learning phase analyses,
a correction formultiple comparisonswas employedvia the cluster level
statistical threshold estimator plugin in the BrainVoyager analysis
package (Forman et al., 1995; Goebel et al., 2006). This tool uses Monte
Carlo simulations to determine the likelihood of observing clusters of
various sizes. First, the map is thresholded at the desired level (e.g.,
pb0.005) and then a whole brain correction is performed based on an
estimate of the spatial smoothness of themap selected andMonte Carlo
simulations which estimate the rate of cluster level false positives.
Following 1000 iterations (the recommended number), the minimum
cluster size threshold which produces the desired cluster level false
positive alpha rate (5% was chosen) is automatically applied to the
selected map. For each analysis, all active clusters in the resulting map
are used to make a table which summarizes the number of clusters
above thedesired threshold for eachsize.When theanalysis is complete,
each cluster size is assigned analpha value determined by the frequency
of its occurrence in the SPM. Therefore, thismethod corrects formultiple
cluster tests in themap and produces a cluster level false positive rate of
5%.

In order to investigate activity in the brain during learning, an
Analysis of Variance (ANOVA) was conducted using learning type
(feedback and observation) and cue difficulty (easy and hard) as
within subjects factors. The first SPM of interest investigated a main
effect of cue difficulty. This primary analysis allowed for a non biased
examination of the relative engagement and pattern of activity in the
BG, particularly the striatum, and the MTL, with focus on the
hippocampus, during the learning phase of the task. Regions of
interest (ROIs) were defined based on the results from the main effect
of cue difficulty analysis and the BOLD signal (characterized by mean
parameter estimates or beta weights) of these a posteriori ROIs (e.g.,
BG) was examined in order to explore differences between feedback
and observation learning in a post hoc analysis. Additionally, a
potential effect of time was examined during the learning phase. In
order to model time, the learning phase was separated according to
block/run. The BOLD signal was extracted from the a posterior regions
of interest (e.g., hippocampus and caudate nucleus) for the first
learning block/run of each learning type (e.g., observation trials 1 to
40; feedback trials 1 to 40) and again for the second learning block/
run of each learning type (e.g., observation trials 41 to 80; feedback
trials 41 to 80). The mean BOLD signal from the “early” learning run
was then compared to the mean BOLD signal from the “late” learning
run in both ROIs for both learning types. The second SPM of interest
investigated a main effect of learning type. The third SPM of interest
examined potential interactions of learning type and cue difficulty.
During the test phase, we examined neural activity across the entire
trial (stimulus onset and participant response). A random effects GLM
was used with observation (easy and hard), feedback (easy and hard),
and novel cues as predictors, along with 6 motion parameters as
regressors of no interest. FromthisGLM,wegenerated SPMs thresholded
at pb0.005, that contrasted studied (observation and feedback cues
collapsed across difficulty) vs. non studied (novel) cues. The cluster level
statistical threshold estimator plugin was also used on the SPM
generated for the test phase producing a cluster level false positive
rate of 5%. Any ROIs which did not withstand correction are clearly
labeled and should be interpreted with caution (Poldrack et al., 2008).
Parameter estimates were extracted from the resulting ROI and used for
further post hoc analyses. Post hoc analyses conducted on the learning
phasebehavior andneuroimagingdata aswell as the test phase behavior
andneuroimaging datawhich consisted ofmore than two t testswithin a
family of comparisonswere corrected formultiple comparisonswith the
sequential Bonferroni correction (Holm, 1979; Rice, 1989).

Granger causality analysis

A Granger causality analysis was performed on the learning phase
data to examine both functional and effective connectivity in the
brain. The purpose of this analysis was to determine the relationship
between a seed region (x) and activity within the rest of the brain.
Geweke (1982) proposed a measure of linear dependence, Fx,y
between two hypothetical times series of data, x[n] and y[n], using
vector autoregressive models. Fx,y consists of the sum of three distinct
components:

Fx;y = Fx→y + Fy→x + Fx⋅y

Fx→y is a measure of the directed influence from x to y;
examining if past values of x improve the current predicted
value of y.

Fy→x is a measure of the directed influence from y to x;
examining if past values of y improve the current predicted
value of x.

Fx⋅y is a measure of the undirected instantaneous influence of x
and y. This measure incorporates the current value of x or y
into the model which already contains the past values of x
and y.

Therefore, the Granger causality analysis measures both directed
(Fx→y and/or Fy→x) as well as undirected instantaneous influence (Fx⋅y)
between a specified seed region of the brain (x) and the rest of the brain
(see Goebel et al., 2003; Roebroeck et al., 2005 for more details).

A Granger causality analysis was conducted to specifically probe
interactions between the hippocampus and the striatum during
probabilistic learning. The hippocampus ROI obtained from the main
effect of cue difficulty analysis from the learning phase ANOVA was
used as the principle seed region. As a caution for interpretation of the
Granger causality results, it must be kept in mind that the seed region
used for this analysis was obtained at a threshold of pb0.005,
uncorrected for multiple comparisons. We chose this ROI as the seed
region given the direct anatomical projections from the hippocampus
to the basal ganglia (Kelley and Domesick, 1982). Separate functional
and effective connectivity maps for the feedback and observation data
were calculated. For each participant's data, the two feedback runs
were combined to form one feedback map while the two observation
runs were combined to form one observationmap.We then examined
connectivity across the entire run (first to last time point, 240 volumes
for each run). Next we combined all the feedback maps and all the
observation maps from each participant to form one group map for
the feedback data and one group map for the observation data
(n=16) at a threshold of pb0.0001 and a cluster threshold with an



extent of 7 voxels for the observation maps and 8 voxels for the
feedback maps (correcting to a cluster level false positive rate of 5%).
Last, standard second level statistics were performed on the group
maps; specifically we ran a t test on the group data. Reported results
represent functional connectivity data (instantaneous influence
without directionality information; Fx⋅y) as effective connectivity
(Fx→y and/or Fy→x) results were not observed between the a posteriori
regions of interest. Finally, as a control analysis, a second Granger
causality analysis was performed in an identical manner using the
caudate nucleus ROI obtained from the main effect of cue difficulty
analysis from the learning phase ANOVA. Maps were thresholded at
pb0.0005 and a cluster threshold of 12 (correcting to a cluster level
false positive rate of 5%) unless otherwise stated.

Prediction error analysis

We applied a reinforcement learning model to the behavioral
accuracy data for the feedback trials only. The prediction error (PE)
regressorwas calculated based on aQ learningmodel (Watkins, 1989).
In this model, the expected values for actions (indicating whether the
value of the cue was higher or lower than 5) were updated using the
Bellman equation and subjects’ actual choices were determined by a
softmax function of action values. Three parameters were used in the
model: (1) learning rate, λ (2) action values, w↑ and w↓ (3) softmax
function temperature, m. Optimal values for these parameters were
estimated using a maximum likelihood estimation algorithm (MLE). A
single set of free parameters was used for all participants when
modeling the PE regressor. The prediction error is represented by δ; r is
equal to the amount of reward, which in the feedback trials was either
0 for incorrect trials or 1 for correct trials; i=trial number and, j
represents action type: guessing a high or low value.

wj;i + 1←wj;i + λδ ð1Þ

δ = r–wj;i ð2Þ

The prediction errors generated from the above equations using
the optimal parameters were used as a regressor in the GLM
neuroimaging analysis. We also included two additional predictors,
trial event andmissed responses, as well as the six motion parameters
as regressors of no interest in the analysis. The PE was coded during
the 2-s feedback presentation phase for the feedback learning trials
only. The resulting SPMwas generated at a threshold of pb0.005 with
a voxel contiguity threshold of 5 continuous voxels (correcting to a
cluster level false positive rate of 5%) and probed regions of the brain
that correlated with PE during probabilistic learning in the feedback
session.

Results

Behavioral results

Learning phase: accuracy
In order to examine accuracy differences between the learning

types and levels of cue difficulty, a 2 (learning type: feedback vs.
observation)×2 (cue difficulty: easy vs. hard) repeated measures
ANOVAwas performed. Amain effect of cue difficulty, (F(1,15)=16.04;
pb0.01), no main effect of learning type (F(1,15)=1.47; pN0.05), and
no significant interaction (F(1,15)=0.85; pN0.05) were observed
(Fig. 2A). Post hoc t tests were performed to further examine the
main effect of cue difficulty within and across conditions. The results
revealed that within both the observation (t(15)=2.54; pb0.025) and
feedback (t(15)=2.45; pb0.05) trials participants performed signifi-
cantly better on easy compared to hard cues. Performance was nearly
significantly better for easy cues during observation compared to

image of Fig.�2
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Bonferroni correction), but no differences were observed for obser-
vation performance (t(15)=1.04; pN0.05). As expected, participants'
performance in the novel condition did not differ over time (t(15)=
1.01; pN0.05).

During the individual test phases, no differences between feedback
and observation trials or between easy and hard cues were observed.
In the immediate test phase, for example, a 2 (learning type:
observation vs. feedback)×2 (cue difficulty: easy vs. hard) repeated
measures ANOVA was performed to examine differences in accuracy
between learning types and the level of cue difficulty (excluding the
novel information and examining only the previously studiedmaterial
during the immediate test session). This analysis revealed no
significant main effect of learning type (F(1,15)=0.06; pN0.05), no
significant main effect of cue difficulty (F(1,15)=0.23; pN0.05), nor a
significant interaction (F(1,15)=1.92; pN0.05), suggesting that parti-
cipants successfully learned contingencies independent of learning
type and cue difficulty. A similar 2×2 repeated measures ANOVA was
performed for the follow up test phase examining potential
differences between learning type and level of cue difficulty. No
significant main effect of learning type (F(1,15)=0.51; pN0.05), no
significant main effect of cue difficulty (F(1,15)=0.37; pN0.05), nor a
significant interaction (F(1,15)=0.00, pN0.05) were observed.

Neuroimaging results

Learning phase: main effect of cue difficulty
From the learning type×cue difficulty ANOVA, a main effect of cue

difficulty was examined (Supplementary Table 1). A region of the left
caudate nucleus was involved in processing a main effect of cue
difficulty (Fig. 3), along with a cluster in the left hippocampus which
Fig. 3.Main effect of cue difficulty analysis during the learning phase identified regions of int
z=−36, −28, −8). Graphs depict mean parameter estimates for both the (B) left caudate
represent s.e.m.
was uncorrected. Mean parameter estimates from these two a
posteriori ROIs were then extracted for further analyses. In the left
caudate nucleus (x, y, z=−15, 20, 7; Fig. 3A and B), the pattern of
BOLD responses was similar for both feedback and observation
learning sessions, with no differences between learning type when
collapsed across cue difficulty (t(15)=1.00; pN0.05). Post hoc t tests
reveal a greater BOLD response for easy than hard cues in both learning
types [feedback: (t(15)=5.02; pb0.025); observation: (t(15)=3.99;
pb0.05]. In the left hippocampus ROI (x, y, z=−36, −28, −8; Fig. 3C
and D) a marginally significant effect was observed when comparing
mean parameter estimates from the feedback and observation sessions
(t(15)=2.01; p=0.06), with a trend towards greater BOLD responses
during the observation session. This difference was primarily driven by
performance during the hard trials (t(15)=2.40; p=0.03; trend after
sequential Bonferroni correction). Post hoc t tests indicate a greater
BOLD response for easy than hard cues in the feedback trials (t(15)=
3.73; pb0.025) and a trend towards a greater response for easy
compared to hard cues in the observation trials: (t(15)=1.79; p=0.09).

Finally, we examined changes in the mean BOLD signal for feedback
and observation trials over time by comparing the BOLD signal early
(first block) and late (second block) during the learning phase. A 2
(learning type: feedback vs. observation)×2 (cue difficulty: easy vs.
hard)×2 (time: early vs. late) repeatedmeasures ANOVA conducted on
themean BOLD signal from the caudate nucleus revealed nomain effect
of learning type (F(1,15)=0.82; ; pN0.05), a main effect of cue difficulty
(F(1,15)=95.47; pb0.01), no main effect of time (F(1,15)=1.97; ;
pN0.05), and no significant interactions. Mean parameter estimates
approached a significant increase as learning progressed for the
observation hard cues in the caudate nucleus (t(15)=2.25; p=0.04;
trend after sequential Bonferroni correction; Supplementary Fig. 1A).
erest in the (A) left caudate nucleus (x, y, z=−15, 20, 7) and (C) left hippocampus (x, y,
nucleus and (D) left hippocampus across learning type and cue difficulty. Error bars

image of Fig.�3


The same 2×2×2 repeated measures ANOVA was conducted on the
mean BOLD signal from the hippocampus ROI and revealed a trend
towards amain effect of learning type (F(1,15)=3.36; ; p=0.09), amain
effect of cue difficulty (F(1,15)=20.69; pb0.01), a main effect of time
(F(1,15)=5.35; ; pb0.05), and a trend towards a significant interaction
between learning type and time (F(1,15)=3.76; ; pb0.07). Post hoc
comparisons revealed a nearly significant increase for the feedback hard
cues in the hippocampus as learning progressed (t(15)=2.38; p=0.03;
trend after sequential Bonferroni correction; Supplementary Fig. 1B).

Learning phase: Main effect of learning type
From the same learning type×cue difficulty ANOVA, a main effect

of learning type was examined (Supplementary Table 2). This analysis
revealed activation in different regions of the basal ganglia, specifi-
cally the right ventral portion of the head of the caudate nucleus (x, y,
z=6, 3, 4) and the left ventral caudate nucleus extending into the
globus pallidus (x, y, z=−12, 2, 4; Supplementary Fig. 2). No
differences with respect to cue difficulty were observed in these ROIs.
At the threshold of pb0.005, no voxels within the hippocampus were
observed.

Learning phase: interaction of cue difficulty and learning type
An investigation of the interaction between learning type and cue

difficulty from the ANOVA revealed activation in an area of the left
medial prefrontal cortex. Post hoc t tests conducted on the mean
parameter estimates extracted from this region indicated greater
activity for observation easy compared to hard trials (t(15)=4.63;
pb0.025); but no differences in diffi



Fig. 4. Granger causality analysis using the hippocampus ROI obtained from the main effect of cue difficulty analysis as a reference region. (A) Two regions of the right caudate
nucleus (x, y, z=14, 18, 13) and (x, y, z=14, 12, 19; not shown) correlated with the hippocampus during the feedback trials, while (B) nearly the same ROIs (x, y, z=14, 18, 13) and
(x, y, z=14, 10, 18; not shown) and a region of the right ventral putamen (x, y, z=22, 3, −4; not shown) correlated with the hippocampus during the observation trials.
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interactionmay potentially be explained by dopaminergicmodulation
during reward related learning (Lisman and Grace, 2005; Shohamy
et al., 2008) as both BG and MTL ROIs were found to correlate with a
prediction error signal, further corroborating the hypothesis that these
distinctmemory systems interact in a parallel manner while processing
probabilistic information to facilitate goal directed behavior.

These results complement the visuomotor learning and simple
association learning literature, which suggests that the medial tem-
poral lobe and basal ganglia may be online simultaneously and are
involved in learning arbitrary visuomotor associations (Amso et al.,
2005; Haruno and Kawato, 2006; Law et al., 2005; Toni et al., 2001). In
particular, our results are consistent with a recent study by Mattfeld
and Stark (2010) which investigated the interaction of the MTL and
the BG during an arbitrary visuomotor association task. The authors
reported that several regions of the MTL and BG demonstrated an
increase in BOLD signal as the strength of memory increased during a
trial and error task, suggesting that regions of the MTL and BG are
involved in learning arbitrary associations. Our observation of the
hippocampus and caudate nucleus exhibiting larger BOLD responses
to easy compared to hard cues complements Mattfeld and Stark's
result. The authors also employed a functional connectivity analysis
which revealed connectivity between both the ventral (nucleus
accumbens) and dorsal (caudate nucleus) striatum with the hippo-
campus during learning, further supporting the interactive nature of
these systems during learning and memory processes. One important
distinction between our current task design and more traditional
visuomotor tasks is the inclusion and investigation of different types
of learning (observation and feedback).

Our results enhance recent neuroimaging findings demonstrating
noncompetitive interactions between the BG and MTL during
category learning (Cincotta and Seger, 2007; Voermans et al., 2004).
For instance, a recent blocked design fMRI study which used an
Fig. 5. Activation in both (A) left putamen (x, y, z=−30, 2, 4) and (B) right hippocampus (x
during probabilistic feedback learning.
information integration category learning task observed similar
patterns of activation to feedback and observation information in
the hippocampus and regions of the striatum (Cincotta and Seger,
2007). The focus of this paper was on categorizing the BOLD response
of different sub regions of the striatum to feedback and observation
information. Interestingly, bilateral hippocampal activity to both
types of information was also reported, leading to the interpretation
that the striatum and hippocampus interact noncompetitively during
information integration category learning. In the current experiment,
an event related design allowed for the decoupling of factors such as
difficulty and examining changes across learning to further lend
support to the hypothesis that parallel processing in the BG and MTL
contributes to overall learning during probabilistic paradigms
(irrespective of the type of learning). Furthermore, we observed a
significant positive correlation between the BG (caudate nucleus) and
MTL (hippocampus) during the observation learning session and a
trend towards a positive correlation during the feedback learning
session. Whereas negative correlations may imply competition
between memory systems (Poldrack et al., 2001), positive correla-
tions may suggest noncompetitive, perhaps even synergistic interac-
tions, leading to the interpretation that one system may inform the
other in specific contexts to facilitate probabilistic learning. This
functional connectivity is illustrated by Granger causality maps using
both the hippocampus and the caudate nucleus as seed regions, which
highlighted that areas within the striatum and the hippocampus were
correlated at simultaneous time points during the learning phase.

It should be noted that our hippocampus region of activation from
the main effect of cue difficulty analysis is reported at pb0.005,
uncorrected for multiple comparisons. Additionally, two regions from
the test phase analysis, the caudate nucleus and a region adjacent to
the hippocampus, are also reported at pb0.005 uncorrected. Although
this information could be useful for future studies, regions reported at
, y, z=27, −28, −14) were found to positively correlate with a prediction error signal
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an uncorrected level should be regarded with caution when
interpreting the results due to the increased likelihood of producing
a Type I error (Poldrack et al., 2008).

The major differences between the feedback and observation
versions of our task were outlined the Materials and methods section.
Despite their differences, however, the two learning sessions share
the common goal of learning the value of probabilistic cues. Thus,
participants may engage in a variety of cognitive strategies in order to
facilitate successful performance. As learning progresses over time in
the feedback session, for instance, it is possible that participants
employ a more declarative based cued recall strategy during the cue
phase. Participants may also use verbal rehearsal strategies during the
learning phase, irrespective of the task version. Research examining
how participants solve another probabilistic learning task, the
Weather Prediction Task (WPT), may shed some insight into possible
declarative and nondeclarative components of category learning tasks
as well as the knowledge that participants may have during these
types of learning tasks (Gluck et al., 2002; Meeter et al., 2006). A
relatively recent study by Newell et al. (2007)
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differences were also apparent. First, only regions within the basal
ganglia weremodified by amain effect of learning type, while no voxels
were identified in the MTL showing such differentiation. Several
neuroimaging papers have shown that feedback and reward processing
recruit ventromedial regions of the striatum (for review see Delgado,
2007), thus, it is not surprising that this region was recruited more
strongly during the feedback learning trials. It may have been expected
that theMTLwould be selectivelymodulated by the observation version
given previous results (Poldrack et al., 2001); however we did not
observe this.While a null result in neuroimaging is not indicative of any
particular finding per se and the context and details of our paradigm
differ fromprevious probabilistic learning studies, it is possible thatMTL
BOLD signals within our paradigm are recruited during both feedback
and observation learning–as suggested by the main effect of difficulty
analysis–to contribute to overall learning. A second difference which
emerged between the hippocampus and caudate nucleus was that the
hippocampus showed amain effect of time (early×late learning)during
the learning session, whereas caudate nucleus responses were not
significant. This effect was driven primarily by activity during feedback
learning (primarily for the hard cues), which was greater during late
compared to early stages of learning in the hippocampus. This result
may suggest that the involvement of the hippocampus in feedback
learning happens later on during the learning process.

One finding to note is that the active voxels comprising regions of
interest within the BG varied according to the type of analysis. It is
perhaps not surprising, given the multifunctionality and connectivity of
the striatum (Middleton and Strick, 2000a,b; Pennartz et al., 2009) that
different voxels would be sensitive to the type of learning or level of
difficulty. In the current experiment, dorsomedial regions of the striatum
(caudate nucleus) were involved in initial learning and testing, whereas
the dorsolateral regions (putamen) were involved in subsequent
analyses with activity during learning positively correlating with
prediction error signals. A functional connectivity analysis also revealed
correlationsbetweenboth caudatenucleus andputamen regions and the
hippocampus. Interestingly, a ventromedial striatum region was found
to be more responsive to feedback compared to observation learning,
suggesting that some striatal subcomponents may distinguish between
learning type (Poldrack et al., 2001) as supported by neuropsychological
studies (Shohamy et al., 2004). In our design, however, this analysis is
affected by the presence of affective feedback known to engage regions
of the ventromedial striatum (for review see Delgado, 2007). Yet, this
result is in accordancewithpreviousprobabilistic learning studieswhich
report engagement of posterior parts of the caudate nucleus and
putamenduring learning, andmore anterior parts of the caudate nucleus
and ventral striatum linked with feedback processing (Cincotta and
Seger, 2007; Seger and Cincotta, 2006).

In contrast to the striatum results, activity in the hippocampus was
fairly consistent across analyses. There has also been recent research
parsing out the distinct functional role of the subregions of the
hippocampus. However, these studies have focused more on other
issues such as anatomical distinctions between regions involved in
memory encoding versus retrieval as well as pattern completion
versus pattern separation (Bakker et al., 2008; Eldridge et al., 2005;
Greicius et al., 2003). Future studies using high resolution fMRI may
investigate how distinct subregions of MTL and BG interact during
learning, to contribute to decision making processes underlying goal
directed behaviors. To conclude, an investigation of the interactions
between the MTL and BG during probabilistic learning suggests that
these distinct memory regions may interact in a parallel manner to
facilitate goal directed learning, acting synergistically during predic-
tion error like learning scenarios.

Acknowledgments

This work was supported by a National Institute of Mental Health
Grant (MH08408) and a National Science Foundation Grant (0718153).
The authors would like to thank Mark Gluck, Catherine Myers and
Elizabeth Tricomi for helpful discussion and comments, andVictoria Lee,
Michael Niznikiewicz, Armin Heinecke and the staff at the University
Heights Imaging Center for assistance.

Appendix A. Supplementary data

Supplementary data to this article can be found online at
doi:10.1016/j.neuroimage.2010.10.080.

References

Abler, B., Walter, H., Erk, S., Kammerer, H., Spitzer, M., 2006. Prediction error as a linear
function of reward probability is coded in human nucleus accumbens. Neuroimage
31, 790–795.

Adcock, R.A., Thangavel, A., Whitfield-Gabrieli, S., Knutson, B., Gabrieli, J.D., 2006.
Reward-motivated learning: mesolimbic activation precedes memory formation.
Neuron 50, 507–517.

Amso, D., Davidson, M.C., Johnson, S.P., Glover, G., Casey, B.J., 2005. Contributions of the
hippocampus and the striatum to simple association and frequency-based learning.
Neuroimage 27, 291–298.

Atallah, H.E., Rudy, J.W., O'Reilly, R.C., 2008. The role of the dorsal striatum and dorsal
hippocampus in probabilistic and deterministic odor discrimination tasks. Learn.
Mem. 15, 294–298.

Bakker, A., Kirwan, C.B., Miller, M., Stark, C.E., 2008. Pattern separation in the human
hippocampal CA3 and dentate gyrus. Science 319, 1640–1642.

Barto, A.G., 1995. Adaptive critics and the basal ganglia. In: Houk, J.C., Davis, J., Beiser, D.
(Eds.), Models of Information Processing in the Basal Ganglia. MIT Press,
Cambridge, pp. 215–232.

Bunzeck, N., Duzel, E., 2006. Absolute coding of stimulus novelty in the human
substantia nigra/VTA. Neuron 51, 369–379.

Cincotta, C.M., Seger, C.A., 2007. Dissociation between striatal regions while learning to
categorize via feedback and via observation. J. Cogn. Neurosci. 19, 249–265.

Delgado, M.R., 2007. Reward-related responses in the human striatum. Ann. NY Acad.
Sci. 1104, 70–88.

Delgado, M.R., Miller, M.M., Inati, S., Phelps, E.A., 2005. An fMRI study of reward-related
probability learning. Neuroimage 24, 862–873.

Eldridge, L.L., Engel, S.A., Zeineh,M.M., Bookheimer, S.Y., Knowlton, B.J., 2005. A dissociation
of encoding and retrieval processes in the human hippocampus. J. Neurosci. 25,
3280–3286.

Foerde, K., Knowlton, B.J., Poldrack, R.A., 2006. Modulation of competing memory
systems by distraction. Proc. Natl Acad. Sci. USA 103, 11778–11783.

Forman, S.D., Cohen, J.D., Fitzgerald, M., Eddy, W.F., Mintun, M.A., Noll, D.C., 1995.
Improved assessment of significant activation in functional magnetic resonance
imaging (fMRI): use of a cluster-size threshold. Magn. Reson. Med. 33, 636–647.

Geweke, J., 1982. Measurement of linear dependence and feedback between multiple
time series. J. Am. Stat. Assoc. 77, 304–313.

Gluck, M.A., Shohamy, D., Myers, C., 2002. How do people solve the “weather
prediction” task?: individual variability in strategies for probabilistic category
learning. Learn. Mem. 9, 408–418.

Goebel, R., Roebroeck, A., Kim, D.S., Formisano, E., 2003. Investigating directed cortical
interactions in time-resolved fMRI data using vector autoregressive modeling and
Granger causality mapping. Magn. Reson. Imaging 21, 1251–1261.

Goebel, R., Esposito, F., Formisano, E., 2006. Analysis of functional image analysis
contest (FIAC) data with brainvoyager QX: from single-subject to cortically aligned
group general linear model analysis and self-organizing group independent
component analysis. Hum. Brain Mapp. 27, 392–401.

Greicius, M.D., Krasnow, B., Boyett-Anderson, J.M., Eliez, S., Schatzberg, A.F., Reiss, A.L.,
Menon, V., 2003. Regional analysis of hippocampal activation during memory
encoding and retrieval: fMRI study. Hippocampus 13, 164–174.

Haber, S.N., 2003. The primate basal ganglia: parallel and integrative networks. J. Chem.
Neuroanat. 26, 317–330.

Haruno, M., Kawato, M., 2006. Different neural correlates of reward expectation and
reward expectation error in the putamen and caudate nucleus during stimulus-
action-reward association learning. J. Neurophysiol. 95, 948–959.

Heimer, L., Alheid, G.F., de Olmos, J.S., Groenewegen, H.J., Haber, S.N., Harlan, R.E., Zahm,
D.S., 1997. The accumbens: beyond the core-shell dichotomy. J. Neuropsychiatry
Clin. Neurosci. 9, 354–381.

Holm, S., 1979. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6,
65–70.

Huang, Y.Y., Kandel, E.R., 1995. D1/D5 receptor agonists induce a protein synthesis-
dependent late potentiation in the CA1 region of the hippocampus. Proc. Natl Acad.
Sci. USA 92, 2446–2450.

Jung, Y., Hong, S., Haber, S.N., 2003. Organization of direct hippocampal projections to
the different regions of the ventral striatum in primate. Korean J. Anat. 36, 67–76.

Kelley, A.E., Domesick, V.B., 1982. The distribution of the projection from the
hippocampal formation to the nucleus accumbens in the rat: an anterograde-
and retrograde-horseradish peroxidase study. Neuroscience 7, 2321–2335.

Knowlton, B.J., Squire, L.R., Gluck, M.A., 1994. Probabilistic classification learning in
amnesia. Learn. Mem. 1, 106–120.

Law, J.R., Flanery, M.A., Wirth, S., Yanike, M., Smith, A.C., Frank, L.M., Suzuki, W.A.,
Brown, E.N., Stark, C.E., 2005. Functional magnetic resonance imaging activity

http://dx.doi.org/10.1016/j.neuroimage.2010.10.080



	Parallel contributions of distinct human memory systems during probabilistic learning
	Introduction
	Materials and methods
	Participants
	Experimental paradigm
	fMRI acquisition and analysis
	Granger causality analysis
	Prediction error analysis

	Results
	Behavioral results
	Learning phase: accuracy
	Test phase: accuracy

	Neuroimaging results
	Learning phase: main effect of cue difficulty
	Learning phase: Main effect of learning type
	Learning phase: interaction of cue difficulty and learning type
	Test phase
	Correlations within the neuroimaging data
	Granger causality analysis
	Prediction error analysis


	Discussion
	Acknowledgments
	Supplementary data
	References


